S'abonner

Harnack inequality for symmetric stable processes on fractals - 04/04/08

Krzysztof Bogdan , Andrzej Stós , Paweł Sztonyk
Institute of Mathematics, Wrocław University of Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland 

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 5
Iconographies 0
Vidéos 0
Autres 0

Note presented by Marc Yor

Abstract

We study nonnegative harmonic functions of symmetric -stable processes on d-sets F. We prove the Harnack inequality for such functions when (0,2/dw)(ds,2). Furthermore, we investigate the decay rate of harmonic functions and the Carleson estimate near the boundary of a region in F. In the particular case of natural cells in the Sierpiński gasket we also prove the boundary Harnack principle. To cite this article: K. Bogdan et al., C. R. Acad. Sci. Paris, Ser. I 335 (2002) 59-63.

Le texte complet de cet article est disponible en PDF.

Résumé

Nous présentons l'inégalité de Harnack pour les fonctions -harmoniques sur d-ensembles. En particulier cas de cellule naturelle du triangle de Sierpiński nous obtenons le principe de Harnack à la frontiére. Nous donnons aussi une estimation de la vitesse de decroissance des fonctions -harmoniques près de la frontière ainsi que l'estimation de Carleson. Pour citer cet article : K. Bogdan et al., C. R. Acad. Sci. Paris, Ser. I 335 (2002) 59-63.

Le texte complet de cet article est disponible en PDF.

Plan

Plan indisponible

© 2002  Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 335 - N° 1

P. 59-63 - 2002 Retour au numéro
Article précédent Article précédent
  • Rational homotopy groups and Koszul algebras
  • Stefan Papadima, Alexander I. Suciu
| Article suivant Article suivant
  • Extension du théorème de Cameron-Martin aux translations aléatoires
  • Xavier Fernique

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.