S'abonner

Modal decomposition from partial measurements - 03/12/19

Doi : 10.1016/j.crme.2019.11.011 
Clément Jailin a, b , Stéphane Roux a,
a LMT (ENS Paris-Saclay/CNRS/Université Paris-Saclay), 61, avenue du Président-Wilson, 94235 Cachan, France 
b Safran Tech, rue des Jeunes-Bois, 78772 Magny-les-Hameaux, France 

Corresponding author.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 10
Iconographies 3
Vidéos 0
Autres 0

Abstract

A data set over space and time is assumed to have a low-rank representation in separated spatial and temporal modes. The problem of evaluating these modes from a temporal series of partial measurements is considered. Each elementary instantaneous measurement captures only a “window” (in space) of the observed data set, but the position of this window varies in time so as to cover the entire region of interest and would allow for a complete measurement would the scene be static. A novel procedure, alternative to the Gappy Proper Orthogonal Decomposition (GPOD) methodology, is introduced. It is a fixed-point iterative procedure where modes are evaluated sequentially. Tested upon very sparse acquisition (1% of measurements being available) and very noisy synthetic data sets (10% noise), the proposed algorithm is shown to outperform two variants of the GPOD algorithm, with much faster convergence, and better reconstruction of the entire data set.

Le texte complet de cet article est disponible en PDF.

Keywords : Modal analysis, Proper generalized decomposition, Dynamic stereo-vision, Dynamic tomography, Field recovery, Gappy proper orthogonal decomposition


Plan


© 2019  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 347 - N° 11

P. 863-872 - novembre 2019 Retour au numéro
Article précédent Article précédent
  • Evaluation of hip fracture risk using a hyper-parametric model based on the Locally Linear Embedding technique
  • Enrique Nadal, David Muñoz, Nieves Vivó, Irene Lucas, Juan José Ródenas
| Article suivant Article suivant
  • A non-intrusive approach for the reconstruction of POD modal coefficients through active subspaces
  • Nicola Demo, Marco Tezzele, Gianluigi Rozza

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.