S'abonner

An efficient Tabu-search optimized regression for data-driven modeling - 03/12/19

Doi : 10.1016/j.crme.2019.11.006 
Chady Ghnatios a, , Ré-Mi Hage b , Ilige Hage a
a Notre Dame University–Louaize, Department of Mechanical Engineering, Zouk Mosbeh, PO Box 72, Lebanon 
b Notre Dame University–Louaize, Mathematics Department, Zouk Mosbeh, PO Box 72, Lebanon 

Corresponding author.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 11
Iconographies 11
Vidéos 0
Autres 0

Abstract

In the past decade, data science became trendy and in-demand due to the necessity to capture, process, maintain, analyze and communicate data. Multiple regressions and artificial neural networks are both used for the analysis and handling of data. This work explores the use of meta-heuristic optimization to find optimal regression kernel for data fitting. It is shown that optimizing the regression kernel improve both the fitting and predictive ability of the regression. For instance, Tabu-search optimization is used to find the best least-squares regression kernel for different applications of buckling of straight columns and artificially generated data. Four independent parameters were used as input and a large pool of monomial search domain is initially considered. Different input parameters are also tested and the benefits of using of independent input parameters is shown.

Le texte complet de cet article est disponible en PDF.

Keywords : Optimized regression, Tabu-search, Kernel optimization, Data-driven


Plan


© 2019  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 347 - N° 11

P. 806-816 - novembre 2019 Retour au numéro
Article précédent Article précédent
  • Nonintrusive data-based learning of a switched control heating system using POD, DMD and ANN
  • Tarik Fahlaoui, Florian De Vuyst
| Article suivant Article suivant
  • Risk analysis: Survival data analysis vs. machine learning. Application to Alzheimer prediction
  • Catherine Huber-Carol, Shulamith Gross, Filia Vonta

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.