An efficient Tabu-search optimized regression for data-driven modeling - 03/12/19
pages | 11 |
Iconographies | 11 |
Vidéos | 0 |
Autres | 0 |
Abstract |
In the past decade, data science became trendy and in-demand due to the necessity to capture, process, maintain, analyze and communicate data. Multiple regressions and artificial neural networks are both used for the analysis and handling of data. This work explores the use of meta-heuristic optimization to find optimal regression kernel for data fitting. It is shown that optimizing the regression kernel improve both the fitting and predictive ability of the regression. For instance, Tabu-search optimization is used to find the best least-squares regression kernel for different applications of buckling of straight columns and artificially generated data. Four independent parameters were used as input and a large pool of monomial search domain is initially considered. Different input parameters are also tested and the benefits of using of independent input parameters is shown.
Le texte complet de cet article est disponible en PDF.Keywords : Optimized regression, Tabu-search, Kernel optimization, Data-driven
Plan
Vol 347 - N° 11
P. 806-816 - novembre 2019 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.
Déjà abonné à cette revue ?