Gait Segmentation of Data Collected by Instrumented Shoes Using a Recurrent Neural Network Classifier - 05/04/19
Résumé |
The authors present a Recurrent Neural Network classifier model that segments the walking data recorded with instrumented footwear. The signals from 3 piezoresistive sensors, a 3-axis accelerometer, and Euler angles are used to generate temporal gait characteristics of a user. The model was tested using a data set collected from 28 adults containing 4198 steps. The mean errors for heel strikes and toe-offs were −5.9 ± 37.1 and 11.4 ± 47.4 milliseconds. These small errors show that the algorithm can be reliably used to segment the gait recordings and to use this segmentation to estimate temporal parameters of the subjects.
Le texte complet de cet article est disponible en PDF.Keywords : Wearables, Gait recognition, Machine learning, Neural network, Rehabilitation robotics
Plan
Disclosure Statement: The authors have nothing to disclose. |
Vol 30 - N° 2
P. 355-366 - mai 2019 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Déjà abonné à cette revue ?