S'abonner

Infodengue: A nowcasting system for the surveillance of arboviruses in Brazil - 05/07/18

Doi : 10.1016/j.respe.2018.05.408 
C. Codeco a, , F. Coelho b, O. Cruz a, S. Oliveira a, T. Castro c, L. Bastos a
a PROCC, Fiocruz, Rio de Janeiro, Brazil 
b School of Applied Math, Fundação Getulio Vargas, Rio de Janeiro, Brazil 
c Pos Graduação Epidemiologia em Saúde Pública, Fiocruz, Rio de Janeiro, Brazil 

Corresponding author.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Résumé

In cities dengue is endemic, various protocols exist for monitoring the disease activity as well as its risk factors, such as vector density, climate favorable for transmission and case counts. However, the complexity and cost of the data collection, together with the delays caused by the flow of data from data collections systems, through central health authorities and back to the health agents in charge of controlling the disease, makes timely responses to dengue outbreaks very hard to achieve. In this presentation we describe a system put in place through a joint initiative of the Brazilian National Health Ministry, city level health authorities, and multiple research institutions, bringing together epidemiologists, statisticians, entomologists, computer scientists among other specialties, to tackle the problem of bringing up-to-date epidemiological information to health agents, local decision-makers and the population as a whole. This system is operating in 788 cities in Brazil since 2015 (info.dengue.mat.br/). One of the main design goals of the system was to include all data streams deemed relevant which were available on a regular time-frame. These are data streams selected based not only on their epidemiological relevance, but also on their continuous availability: mention about dengue on Twitter, filtered according to content and aggregated as a city level time series. Climate data (temperature, humidity, and atmospheric pressure measure); epidemiological data (these are the official case data, clinically confirmed cases reported by medical professionals through official channels). A pipeline was developed to clean, filter, and integrate the datasets. Statistical techniques were developed to:

–correct for reporting delay using a efficient bayesian framework;

–estimate the effective reproductive number of dengue taking into account the variation in temperature;

–and to detect sustained transmission.

The pipeline delivers a classification of alert every week: green (poor conditions for transmission), yellow (favorable transmission conditions), orange (sustained transmission), red (high incidence). To assess the quality of the system, a confusion matrix was constructed to compare the system classification with an expert classification of risk. At last, we discuss how the developed pipeline can be extended to other climate-sensitive diseases, exemplifying with zika and chikungunya.

Le texte complet de cet article est disponible en PDF.

Plan


© 2018  Publié par Elsevier Masson SAS.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 66 - N° S5

P. S386 - juillet 2018 Retour au numéro
Article précédent Article précédent
  • Maternal infection rates: Surveillance in three obstetric units of a French University Hospital group in 2016
  • C. Barreto, S. Amour, E. Kuczewski, O. Dupuis, C. Huissoud, P. Gaucherand, S. Gerbier-Colomban, R. Girard, P. Vanhems
| Article suivant Article suivant
  • The effects of annoyance due to aircraft noise on psychological distress: The results of the DEBATS study in France
  • C. Baudin, M. Lefèvre, B. Laumon, A.-S. Evrard

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.