S'abonner

Intentional and unintentional medication non-adherence in African Americans: Insights from the Jackson Heart Study - 11/06/18

Doi : 10.1016/j.ahj.2018.03.007 
Robert J. Mentz, MD a, b, , Melissa A. Greiner, MS a, Paul Muntner, PhD c, Daichi Shimbo, MD d, Mario Sims, PhD, MS e, Tanya M. Spruill, PhD f, Benjamin F. Banahan, PhD g, Wei Wang, PhD e, Stanford Mwasongwe, MPH h, Karen Winters, PhD, RN e, Adolfo Correa, MD, PhD e, Lesley H. Curtis, PhD a, b, Emily C. O'Brien, PhD a, b
a Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina 
b Department of Medicine, Duke University School of Medicine, Durham, North Carolina 
c Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, AL 
d Department of Medicine, Columbia University Medical Center, NY, New York 
e Department of Medicine, University of Mississippi Medical Center, Jackson, MS 
f Department of Population Health, NYU School of Medicine, New York, NY 
g Center for Pharmaceutical Marketing and Management, University of Mississippi, Jackson, MS 
h Field Center, Jackson Heart Study, Jackson State University, Jackson, MS 

Reprint requests: Robert J. Mentz, MD, PO Box 17969, Durham, NC 27715.PO Box 17969DurhamNC27715

Abstract

Background

Non-adherence to medications is common and leads to suboptimal outcomes. Non-adherence can be intentional (e.g., deciding to skip dosages) or unintentional (e.g., forgetting), yet few studies have distinguished these reasons. An improved understanding of the reasons for non-adherence could inform the development of effective interventions.

Methods and Results

We analyzed data from African Americans in the Jackson Heart Study who were prescribed medications for one or more chronic conditions. Participants were grouped by patient-reported adherence with non-adherence categorized as being intentional, unintentional or both. We used modified Poisson regression models to examine the factors associated with types of non-adherence. Of 2933 participants taking medication, 2138 (72.9%) reported non-adherence with 754 (35.3%) reporting only unintentional non-adherence, 263 (12.3%) only intentional non-adherence, and 1121 (52.4%) both. Factors independently associated with intentional non-adherence included female sex and depressive symptoms while factors associated with unintentional non-adherence included younger age and separated relationship status. Unintentional and intentional non-adherence was more common among participants taking anti-arrhythmic and anti-asthmatic medications, respectively. Higher levels of global perceived stress was associated with both types of non-adherence. The adjusted models for intentional and unintentional non-adherence had c-statistics of 0.65 and 0.66, respectively, indicating modest discrimination.

Conclusion

Specific patient factors and individual medication classes were associated with distinct patterns of intentional and unintentional non-adherence, yet the overall modest discrimination of the models suggests contributions from other unmeasured factors. These findings provide a construct for understanding reasons for non-adherence and provide rationale to assess whether personalized interventions can improve adherence.

Le texte complet de cet article est disponible en PDF.

Abbreviations : JHS, HF, CAD, COPD


Plan


 Funding: This work was supported by grant R01HL117305, K24 HL125704 and R01HL117323 from the National Heart, Lung, And Blood Institute. The Jackson Heart Study is supported by contracts HHSN268201300046C, HHSN268201300047C, HHSN268201300048C, HHSN268201300049C, HHSN268201300050C from the National Heart, Lung, and Blood Institute and the National Institute on Minority Health and Health Disparities. The authors thank the participants and data collection staff of the Jackson Heart Study. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services.


© 2018  Elsevier Inc. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 200

P. 51-59 - juin 2018 Retour au numéro
Article précédent Article précédent
  • B-type natriuretic peptide molecular forms for risk stratification and prediction of outcome after acute myocardial infarction
  • M. Zubair Israr, Liam M. Heaney, Leong L. Ng, Toru Suzuki
| Article suivant Article suivant
  • Prognosis in relation to high-sensitivity cardiac troponin T levels in patients with myocardial infarction and non-obstructive coronary arteries
  • Marcus Hjort, Bertil Lindahl, Tomasz Baron, Tomas Jernberg, Per Tornvall, Kai M. Eggers

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.