S'abonner

A proteomic clock of human pregnancy - 01/03/18

Doi : 10.1016/j.ajog.2017.12.208 
Nima Aghaeepour, PhD a, Benoit Lehallier, PhD b, Quentin Baca, MD, PhD a, Ed A. Ganio, PhD a, Ronald J. Wong, PhD c, Mohammad S. Ghaemi, MSc a, Anthony Culos, BSc a, Yasser Y. El-Sayed, MD d, Yair J. Blumenfeld, MD d, Maurice L. Druzin, MD d, Virginia D. Winn, MD d, Ronald S. Gibbs, MD d, Rob Tibshirani, PhD e, Gary M. Shaw, PhD c, David K. Stevenson, MD c, Brice Gaudilliere, MD, PhD a, Martin S. Angst, MD a,
a Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA 
b Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA 
c Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 
d Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 
e Department of Biomedical Data Sciences and Statistics, Stanford University School of Medicine, Stanford, CA 

Corresponding author: Martin S. Angst, MD.

Abstract

Background

Early detection of maladaptive processes underlying pregnancy-related pathologies is desirable because it will enable targeted interventions ahead of clinical manifestations. The quantitative analysis of plasma proteins features prominently among molecular approaches used to detect deviations from normal pregnancy. However, derivation of proteomic signatures sufficiently predictive of pregnancy-related outcomes has been challenging. An important obstacle hindering such efforts were limitations in assay technology, which prevented the broad examination of the plasma proteome.

Objective

The recent availability of a highly multiplexed platform affording the simultaneous measurement of 1310 plasma proteins opens the door for a more explorative approach. The major aim of this study was to examine whether analysis of plasma collected during gestation of term pregnancy would allow identifying a set of proteins that tightly track gestational age. Establishing precisely timed plasma proteomic changes during term pregnancy is a critical step in identifying deviations from regular patterns caused by fetal and maternal maladaptations. A second aim was to gain insight into functional attributes of identified proteins and link such attributes to relevant immunological changes.

Study Design

Pregnant women participated in this longitudinal study. In 2 subsequent sets of 21 (training cohort) and 10 (validation cohort) women, specific blood specimens were collected during the first (7–14 weeks), second (15–20 weeks), and third (24–32 weeks) trimesters and 6 weeks postpartum for analysis with a highly multiplexed aptamer-based platform. An elastic net algorithm was applied to infer a proteomic model predicting gestational age. A bootstrapping procedure and piecewise regression analysis was used to extract the minimum number of proteins required for predicting gestational age without compromising predictive power. Gene ontology analysis was applied to infer enrichment of molecular functions among proteins included in the proteomic model. Changes in abundance of proteins with such functions were linked to immune features predictive of gestational age at the time of sampling in pregnancies delivering at term.

Results

An independently validated model consisting of 74 proteins strongly predicted gestational age (P = 3.8 × 10–14, R = 0.97). The model could be reduced to 8 proteins without losing its predictive power (P = 1.7 × 10–3, R = 0.91). The 3 top ranked proteins were glypican 3, chorionic somatomammotropin hormone, and granulins. Proteins activating the Janus kinase and signal transducer and activator of transcription pathway were enriched in the proteomic model, chorionic somatomammotropin hormone being the top-ranked protein. Abundance of chorionic somatomammotropin hormone strongly correlated with signal transducer and activator of transcription-5 signaling activity in CD4 T cells, the endogenous cell-signaling event most predictive of gestational age.

Conclusion

Results indicate that precisely timed changes in the plasma proteome during term pregnancy mirror a proteomic clock. Importantly, the combined use of several plasma proteins was required for accurate prediction. The exciting promise of such a clock is that deviations from its regular chronological profile may assist in the early diagnoses of pregnancy-related pathologies, and point to underlying pathophysiology. Functional analysis of the proteomic model generated the novel hypothesis that chrionic somatomammotropin hormone may critically regulate T-cell function during pregnancy.

Le texte complet de cet article est disponible en PDF.

Key words : alpha-fetoprotein, antibody, aptamer, chrionic somatomammotropin hormore, cross-validation, elastic net, gene ontology, gestational age, glypican 3, granulins, Janus kinase/signal transducer and activator of transcription, Luminex, macrophage colony-stimulating factor 1 receptor, plasma protein, polymeric immunoglobulin receptor, pregnancy, prolactin, proteome, protooncogene tyrosine-protein kinase receptor Ret, Somalogic, somamer, T cell


Plan


 The funding sources did not participate in the design of the study, the analysis and interpretation of the data, the writing of the manuscript, or the decision to submit the article for publication.
 This study was supported by the March of Dimes Prematurity Research Center at Stanford University, the Stanford Child Health Research Institute, the Bill and Melinda Gates Foundation, the Intensive Care Nursery Unit Fund, and the Hess Research Fund.
 The authors report no conflict of interest.
 Cite this article as: Aghaeepour N, Lehallier B, Baca Q, et al. A proteomic clock of human pregnancy. Am J Obstet Gynecol 2018;218:347.e1-14.


© 2018  Publié par Elsevier Masson SAS.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 218 - N° 3

P. 347.e1-347.e14 - mars 2018 Retour au numéro
Article précédent Article précédent
  • Comparative analysis of gene expression in maternal peripheral blood and monocytes during spontaneous preterm labor
  • Alison G. Paquette, Oksana Shynlova, Mark Kibschull, Nathan D. Price, Stephen J. Lye, Global Alliance to Prevent Prematurity and Stillbirth Systems Biology of Preterm Birth Team
| Article suivant Article suivant
  • Extremely preterm fetal sheep lung responses to antenatal steroids and inflammation
  • Kevin Visconti, Paranthaman Senthamaraikannan, Matthew W. Kemp, Masatoshi Saito, Boris W. Kramer, John P. Newnham, Alan H. Jobe, Suhas G. Kallapur

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.