S'abonner

L'héritage de Craya, pour une approche statistique à points multiples de la turbulence homogène anisotrope - 06/09/17

Doi : 10.1016/j.crme.2017.05.004 
Claude Cambon
 LMFA, UMR CNRS 5509, École centrale de Lyon, Université de Lyon, France 

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Résumé

Cet article commence par quelques éléments bibliographiques concernant Antoine Craya... où il reste beaucoup de zones d'ombre ! Son influence à Grenoble a été très importante, en particulier sur l'orientation des travaux scientifiques de Jean Mathieu, de Geneviève Comte-Bellot, de René Moreau, pour ne citer que quelques noms dans l'aire Lyon–Grenoble. Je vais ensuite me concentrer sur l'apport scientifique de sa thèse de doctorat ès sciences, soutenue en 1957. Ce mémoire est le seul document détaillé qui nous reste ; il présente l'approche générale, dynamique et statistique de la turbulence (statistiquement) homogène, mais arbitrairement anisotrope. Par rapport au concept de « turbulence homogène isotrope », le champ turbulent est soumis à l'action d'un champ moyen à gradients uniformes qui structure son anisotropie et peut lui fournir de l'énergie. L'effort s'est porté sur la dynamique des corrélations doubles en deux points, et celle des corrélations triples en trois points, dans l'espace physique puis dans l'espace de Fourier. Le formalisme, toujours utile et reconnu, grâce à Jacks Herring (1974), est le repère éponyme, dit « Craya-Herring », qui permet de décomposer fluctuation et corrélations de vitesse sur des modes de type poloïdal / toroïdal /divergent. Mais la contribution d'Antoine Craya ne se limite pas à cette contribution. Cette revue est aussi l'occasion de revenir sur la très longue histoire de la théorie linéaire dite de « distorsion rapide », et de souligner l'importance de la « matrice de Cauchy » (voir aussi la revue d'Uriel Frisch sur la formulation lagrangienne de Cauchy) dans cette histoire. Je vais aussi illustrer comment l'héritage de Craya a pu fructifier, depuis au moins trois décennies jusqu'à aujourd'hui, dans des domaines tels que la turbulence stratifiée ou la magnéto-hydrodynamique, thèmes qui n'avaient pas été abordés par Craya. Nous discuterons aussi comment des études de Keith Moffatt (théorie linéaire dite de « distorsion rapide ») et Steven Orszag (approche non linéaire dite EDQNM) — plus marginalement de Robert Kraichnan — ont constitué des étapes ultérieures essentielles pour une approche générale intégrée de la turbulence anisotrope, qui bénéficie de l'héritage de Craya. Le « problème de fermeture » le plus général en turbulence est aussi commenté à cette occasion.

Le texte complet de cet article est disponible en PDF.

Abstract

Some elements are given on the very multiform career of Antoine Craya. In addition to a strong involvement in applied hydraulics in Grenoble, he was very influential on the research of his colleagues: to give only a few examples of well-known scientists in the Lyon–Grenoble area, he inspired the doctoral work on wall-jets by Jean Mathieu, the doctoral work on channel flow by Geneviève Comte-Bellot, and the dominant research area of René Moreau on magnetohydrodynamic (MHD) turbulence. The main part of this article is devoted to the legacy of Antoine Craya, from his own doctoral dissertation (1957). Inspired by G.I. Taylor probably more than by G. Batchelor, he contributed to establish the concept of HAT (Homogeneous Anisotropic Turbulence), as a useful intermediate step between HIT (Homogeneous Isotropic Turbulence) and fully statistically inhomogeneous turbulent flows. For this purpose, a mean flow with space-uniform velocity gradient can inject energy and anisotropy to a fluctuating flow, and statistical homogeneity is restricted to fluctuations. Complete equations for two-point second-order and three-point third-order velocity correlations were written, both in physical space and in Fourier space, in order to exactly solve mixed pressure–velocity correlations thanks to the incompressibility constraint. Antoine Craya is well known for the use of the eponymous frame of reference, thanks to Jacks Herring (1974). Later recognized as a spectral counterpart of a general decomposition in terms of toroidal/poloidal/dilatational modes, this frame leads to expressing the spectral tensors of correlation with a minimal number of scalar (or pseudo-scalar) descriptors, without loss of information and for arbitrary anisotropy. Craya provided us with a special angle of attack of the so-called RDT (Rapid Distortion Theory) and triadic closures, even if he did not work directly on them. Accordingly, this paper is also an opportunity to come back on the long history of RDT, including the Spectral Linear Theory as a better nomenclature, especially for recent studies. As far as possible, historical milestones are recalled throughout this article, and one recovers the Lagrangian formalism of Cauchy, emphasized by Uriel Frisch as well, with the use of a ‘Cauchy matrix’ in connection with linear theory. Finally, it is shown how the legacy of Craya is present in new (not addressed by him) domains, such as stratified turbulence and MHD turbulence. We discuss how further (past 1957) approaches, by Keith Moffatt (spectral linear theory, 1967), and Steven Orszag (triadic closure for HIT, as EDQNM, Eddy Damped Quasi-Normal Approximation, 1970) can be integrated in a general approach to anisotropic turbulence, which still benefits from Craya's legacy. A synoptic scheme for the description of multipoint statistics is re-discussed on this occasion. More incidentally, connections with Kraichnan theories and with the formalism of Kármán–Howarth–Monin equation(s) are touched upon.

Le texte complet de cet article est disponible en PDF.

Mots-clés : Turbulence, Anisotropie, Statistique à points multiples

Keywords : Turbulence, Anisotropy, Multipoint structure


Plan


© 2017  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 345 - N° 9

P. 627-641 - septembre 2017 Retour au numéro
Article précédent Article précédent
  • Turbulence from 1870 to 1920: The birth of a noun and of a concept
  • Francois G. Schmitt
| Article suivant Article suivant
  • Intermittency as a transition to turbulence in pipes: A long tradition from Reynolds to the 21st century
  • Christophe Letellier

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.