S'abonner

Automated identification of an aspirin-exacerbated respiratory disease cohort - 19/04/17

Doi : 10.1016/j.jaci.2016.05.048 
Katherine N. Cahill, MD a, b, , Christina B. Johns, BA b, Jing Cui, MD, PhD a, b, Paige Wickner, MD, MPH a, b, David W. Bates, MD, MSc a, c, Tanya M. Laidlaw, MD a, b, Patrick E. Beeler, MD a, c, d
a Department of Medicine, Harvard Medical School, Boston, Mass 
b Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Mass 
c Division of General Internal Medicine and Primary Care, Brigham and Women's Hospital, Boston, Mass 
d Research Center for Medical Informatics, University Hospital Zurich and University of Zurich, Zurich, Switzerland 

Corresponding author: Katherine N. Cahill, MD, Brigham and Women's Hospital, 1 Jimmy Fund Way, Smith Bldg, Rm 626B, Boston, MA 02115.Brigham and Women's Hospital1 Jimmy Fund Way, Smith Bldg, Rm 626BBostonMA02115

Abstract

Background

Aspirin-exacerbated respiratory disease (AERD) is characterized by 3 clinical features: asthma, nasal polyposis, and respiratory reactions to cyclooxygenase-1 inhibitors (nonsteroidal anti-inflammatory drugs). Electronic health records (EHRs) contain information on each feature of this triad.

Objective

We sought to determine whether an informatics algorithm applied to the EHR could electronically identify patients with AERD.

Methods

We developed an informatics algorithm to search the EHRs of patients aged 18 years and older from the Partners Healthcare system over a 10-year period (2004-2014). Charts with search terms for asthma, nasal polyps, and record of respiratory (cohort A) or unspecified (cohort B) reactions to nonsteroidal anti-inflammatory drugs were identified as “possible AERD.” Two clinical experts reviewed all charts to confirm a diagnosis of “clinical AERD” and classify cases as “diagnosed AERD” or “undiagnosed AERD” on the basis of physician-documented AERD-specific terms in patient notes.

Results

Our algorithm identified 731 “possible AERD” cases, of which 638 were not in our AERD patient registry. Chart review of cohorts A (n = 511) and B (n = 127) demonstrated a positive predictive value of 78.4% for “clinical AERD,” which rose to 88.7% when unspecified reactions were excluded. Of those with clinical AERD, 12.4% had no mention of AERD by any treating caregiver and were classified as “undiagnosed AERD.” “Undiagnosed AERD” cases were less likely than “diagnosed AERD” cases to have been seen by an allergist/immunologist (38.7% vs 93.2%; P < .0001).

Conclusions

An informatics algorithm can successfully identify both known and previously undiagnosed cases of AERD with a high positive predictive value. Involvement of an allergist/immunologist significantly increases the likelihood of an AERD diagnosis.

Le texte complet de cet article est disponible en PDF.

Key words : Aspirin-exacerbated respiratory disease, electronic health record, asthma, nasal polyps, nonsteroidal anti-inflammatory drugs, chronic rhinosinusitis, structured query language, clinical decision support

Abbreviations used : AERD, BWH, COX-1, EHR, ICD-9, ICD-10, IQR, NSAID, PPV, RPDR, SQL


Plan


 This work was supported by the National Institutes of Health (NIH) (grant nos. NIH K23 HL111113 and NIH K23 AI118804-01), the Swiss National Science Foundation (grant no. P2BSP3_148619 to P.E.B.), departmental funds, and generous contributions from the Vinik and Kaye Families.
 Disclosure of potential conflict of interest: K. N. Cahill receives grant support from the National Institutes of Health. P. Wickner serves as a consultant for Amag Pharmaceuticals. D. W. Bates is a coinventor on Patent No. 6029138 held by Brigham and Women's Hospital. T. M. Laidlaw receives grant support from the National Institutes of Health. P. E. Beeler received grant support from the Swiss National Science Foundation and is an employee of the University Hospital in Zurich. The rest of the authors declare that they have no relevant conflicts of interest.


© 2016  American Academy of Allergy, Asthma & Immunology. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 139 - N° 3

P. 819 - mars 2017 Retour au numéro
Article précédent Article précédent
  • Body fat mass distribution and interrupter resistance, fractional exhaled nitric oxide, and asthma at school-age
  • Herman T. den Dekker, Karen P.I. Ros, Johan C. de Jongste, Irwin K. Reiss, Vincent W. Jaddoe, Liesbeth Duijts
| Article suivant Article suivant
  • Bacterial microbiota of the upper respiratory tract and childhood asthma
  • Martin Depner, Markus J. Ege, Michael J. Cox, Sarah Dwyer, Alan W. Walker, Lena T. Birzele, Jon Genuneit, Elisabeth Horak, Charlotte Braun-Fahrländer, Hanna Danielewicz, Raina M. Maier, Miriam F. Moffatt, William O. Cookson, Dick Heederik, Erika von Mutius, Antje Legatzki

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.