S'abonner

Estimation of tumour regression and growth rates during treatment in patients with advanced prostate cancer: a retrospective analysis - 17/03/17

Doi : 10.1016/S1470-2045(16)30633-7 
Julia Wilkerson, MSc a, Kald Abdallah, MD b, Charles Hugh-Jones, MD c, Greg Curt, MD b, *, Mace Rothenberg, MD d, Ronit Simantov, MD d, Martin Murphy, PhD e, Joseph Morrell, BA e, Joel Beetsch, PhD f, Daniel J Sargent, ProfPhD g, , Howard I Scher, ProfMD h, Peter Lebowitz, MD i, Richard Simon, DSc j, Wilfred D Stein, ProfPhD k, Susan E Bates, ProfMD l, m, Tito Fojo, ProfMD l, m,
a Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA 
b AstraZeneca, Gaithersburg, MD, USA 
c Sanofi US, Bridgewater, NJ, USA 
d Pfizer Inc, New York, NY, USA 
e Project Data Sphere LLC, Cary, NC, USA 
f Celgene Corporation, Summit, NJ, USA 
g Mayo Medical Center, Rochester, MN, USA 
h Memorial Sloan Kettering Cancer Center, New York, NY, USA 
i Janssen, the Pharmaceutical Companies of Johnson & Johnson, New Brunswick, NJ, USA 
j Biometric Research Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA 
k Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel 
l Division of Medical Oncology, Department of Medicine, Columbia University/New York Presbyterian Hospital, Manhattan, NY, USA 
m James J Peters VA Medical Center, Bronx, NY, USA 

* Correspondence to: Prof Tito Fojo, Division of Medical Oncology, Department of Medicine, Columbia University, Herbert Irving Pavilion, 9th Floor, 161 Fort Washington Avenue, New York, NY 10032, USA Division of Medical Oncology Department of Medicine Columbia University Herbert Irving Pavilion 9th Floor 161 Fort Washington Avenue New York NY 10032 USA

Summary

Background

We applied mathematical models to clinical trial data available at Project Data Sphere LLC (Cary, NC, USA), a non-profit universal access data-sharing warehouse. Our aim was to assess the rates of cancer growth and regression using the comparator groups of eight randomised clinical trials that enrolled patients with metastatic castration-resistant prostate cancer.

Methods

In this retrospective analysis, we used data from eight randomised clinical trials with metastatic castration-resistant prostate cancer to estimate the growth (g) and regression (d) rates of disease burden over time. Rates were obtained by applying mathematical models to prostate-specific antigen levels as the representation of tumour quantity. Rates were compared between study interventions (prednisone, mitoxantrone, and docetaxel) and off-treatment data when on-study treatment had been discontinued to understand disease behaviour during treatment and after discontinuation. Growth (g) was examined for association with a traditional endpoint (overall survival) and for its potential use as an endpoint to reduce sample size in clinical trials.

Findings

Estimates for g, d, or both were obtained in 2353 (88%) of 2678 patients with data available for analysis; g differentiated docetaxel (a US Food and Drug Administration-approved therapy) from prednisone and mitoxantrone and was predictive of overall survival in a landmark analysis at 8 months. A simulated sample size analysis, in which g was used as the endpoint, compared docetaxel data with mitoxantrone data and showed that small sample sizes were sufficient to achieve 80% power (16, 47, and 25 patients, respectively, in the three docetaxel comparator groups). Similar results were found when the mitoxantrone data were compared with the prednisone data (41, 39, and 41 patients in the three mitoxantrone comparator groups). Finally, after discontinuation of docetaxel therapy, median tumour growth (g) increased by nearly five times.

Interpretation

The application of mathematical models to existing clinical data allowed estimation of rates of growth and regression that provided new insights in metastatic castration-resistant prostate cancer. The availability of clinical data through initiatives such as Project Data Sphere, when combined with innovative modelling techniques, could greatly enhance our understanding of how cancer responds to treatment, and accelerate the productivity of clinical development programmes.

Funding

None.

Le texte complet de cet article est disponible en PDF.

Plan


© 2017  Elsevier Ltd. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 18 - N° 1

P. 143-154 - janvier 2017 Retour au numéro
Article précédent Article précédent
  • Prediction of overall survival for patients with metastatic castration-resistant prostate cancer: development of a prognostic model through a crowdsourced challenge with open clinical trial data
  • Justin Guinney, Tao Wang, Teemu D Laajala, Kimberly Kanigel Winner, J Christopher Bare, Elias Chaibub Neto, Suleiman A Khan, Gopal Peddinti, Antti Airola, Tapio Pahikkala, Tuomas Mirtti, Thomas Yu, Brian M Bot, Liji Shen, Kald Abdallah, Thea Norman, Stephen Friend, Gustavo Stolovitzky, Howard Soule, Christopher J Sweeney, Charles J Ryan, Howard I Scher, Oliver Sartor, Yang Xie, Tero Aittokallio, Fang Liz Zhou, James C Costello
| Article suivant Article suivant
  • Defining cancer survivors, their needs, and perspectives on survivorship health care in the USA
  • Deborah K Mayer, Shelly Fuld Nasso, Jo Anne Earp

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.