S'abonner

Prediction of overall survival for patients with metastatic castration-resistant prostate cancer: development of a prognostic model through a crowdsourced challenge with open clinical trial data - 17/03/17

Doi : 10.1016/S1470-2045(16)30560-5 
Justin Guinney, PhD a, *, Tao Wang, PhD b, c, *, Teemu D Laajala, MSc f, h, *, Kimberly Kanigel Winner, PhD j, J Christopher Bare, BS a, Elias Chaibub Neto, PhD a, Suleiman A Khan, PhD h, Gopal Peddinti, PhD h, Antti Airola, PhD g, Tapio Pahikkala, PhD g, Tuomas Mirtti, MD h, i, Thomas Yu, BS a, Brian M Bot, MS a, Liji Shen, PhD s, Kald Abdallah, MD l, Thea Norman, PhD a, Stephen Friend, MD a, Gustavo Stolovitzky, PhD m, Howard Soule, PhD n, Christopher J Sweeney, MBBS o, Charles J Ryan, ProfMD p, Howard I Scher, ProfMD q, Oliver Sartor, ProfMD r, Yang Xie, PhD b, d, e, , Tero Aittokallio, ProfPhD f, h, , Fang Liz Zhou, MD s, , James C Costello, DrPhD j, k, ,
the

Prostate Cancer Challenge DREAM Community

  Members listed in the Supplementary Material
Kald Abdallah, Tero Aittokallio, Antti Airola, Catalina Anghe, Helia Azima, Robert Baertsch, Pedro J Ballester, Chris Bare, Vinayak Bhandari, Brian M Bot, Cuong C Dang, Maria Bekker-Nielsen Dunbar, Ann-Sophie Buchardt, Ljubomir Buturovic, Da Cao, Prabhakar Chalise, Junwoo Cho, Tzu-Ming Chu, R Yates Coley, Sailesh Conjeti, Sara Correia, James C Costello, Ziwei Dai, Junqiang Dai, Philip Dargatz, Sam Delavarkhan, Detian Deng, Ankur Dhanik, Yu Du, Aparna Elangovan, Shellie Ellis, Laura L Elo, Shadrielle M Espiritu, Fan Fan, Ashkan B Farshi, Ana Freitas, Brooke Fridley, Stephen Friend, Christiane Fuchs, Eyal Gofer, Gopalacharyulu Peddinti, Stefan Graw, Russ Greiner, Yuanfang Guan, Justin Guinney, Jing Guo, Pankaj Gupta, Anna I Guyer, Jiawei Han, Niels R Hansen, Billy HW Chang, Outi Hirvonen, Barbara Huang, Chao Huang, Jinseub Hwang, Joseph G Ibrahim, Vivek Jayaswa, Jouhyun Jeon, Zhicheng Ji, Deekshith Juvvadi, Sirkku Jyrkkiö, Kimberly Kanigel-Winner, Amin Katouzian, Marat D Kazanov, Suleiman A Khan, Shahin Khayyer, Dalho Kim, Agnieszka K Golinska, Devin Koestler, Fernanda Kokowicz, Ivan Kondofersky, Norbert Krautenbacher, Damjan Krstajic, Luke Kumar, Christoph Kurz, Matthew Kyan, Teemu D Laajala, Michael Laimighofer, Eunjee Lee, Wojciech Lesinski, Miaozhu Li, Ye Li, Qiuyu Lian, Xiaotao Liang, Minseong Lim, Henry Lin, Xihui Lin, Jing Lu, Mehrad Mahmoudian, Roozbeh Manshaei, Richard Meier, Dejan Miljkovic, Tuomas Mirtti, Krzysztof Mnich, Nassir Navab, Elias C Neto, Yulia Newton, Thea Norman, Tapio Pahikkala, Subhabrata Pal, Byeongju Park, Jaykumar Patel, Swetabh Pathak, Alejandrina Pattin, Donna P Ankerst, Jian Peng, Anne H Petersen, Robin Philip, Stephen R Piccolo, Sebastian Pölsterl, Aneta Polewko-Klim, Karthik Rao, Xiang Ren, Miguel Rocha, Witold R. Rudnicki, Charles J Ryan, Hyunnam Ryu, Oliver Sartor, Hagen Scherb, Raghav Sehgal, Fatemeh Seyednasrollah, Jingbo Shang, Bin Shao, Liji Shen, Howard Sher, Motoki Shiga, Artem Sokolov, Julia F Söllner, Lei Song, Howard Soule, Gustavo Stolovitzky, Josh Stuart, Ren Sun, Christopher J Sweeney, Nazanin Tahmasebi, Kar-Tong Tan, Lisbeth Tomaziu, Joseph Usset, Yeeleng S Vang, Roberto Vega, Vitor Vieira, David Wang, Difei Wang, Junmei Wang, Lichao Wang, Sheng Wang, Tao Wang, Yue Wang, Russ Wolfinger, Chris Wong, Zhenke Wu, Jinfeng Xiao, Xiaohui Xie, Yang Xie, Doris Xin, Hojin Yang, Nancy Yu, Thomas Yu, Xiang Yu, Sulmaz Zahedi, Massimiliano Zanin, Chihao Zhang, Jingwen Zhang, Shihua Zhang, Yanchun Zhang, Fang Liz Zhou, Hongtu Zhu, Shanfeng Zhu, Yuxin Zhu

a Sage Bionetworks, Seattle, WA, USA 
b Quantitative Biomedical Research Center, Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA 
c Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA 
d The Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA 
e Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA 
f Department of Mathematics and Statistics, University of Turku, Turku, Finland 
g Department of Information Technology, University of Turku, Turku, Finland 
h Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland 
i Department of Pathology (HUSLAB), Helsinki University Hospital, Helsinki, Finland 
j Department of Pharmacology and Computational Biosciences Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA 
k University of Colorado Comprehensive Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA 
l AstraZeneca, Gaithersburg, MD, USA 
m IBM T J Watson Research Center, IBM, Yorktown Heights, NY, USA 
n Prostate Cancer Foundation, Santa Monica, CA, USA 
o Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 
p Genitourinary Medical Oncology Program, Division of Hematology and Oncology, University of California, San Francisco, CA, USA 
q Genitourinary Oncology Services, Department of Medicine, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA 
r Tulane Cancer Center, Tulane University, New Orleans, LA, USA 
s Sanofi, Bridgewater, NJ, USA 

* Correspondence to: Dr James C Costello, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA University of Colorado Anschutz Medical Campus Aurora CO 80045 USA

Summary

Background

Improvements to prognostic models in metastatic castration-resistant prostate cancer have the potential to augment clinical trial design and guide treatment strategies. In partnership with Project Data Sphere, a not-for-profit initiative allowing data from cancer clinical trials to be shared broadly with researchers, we designed an open-data, crowdsourced, DREAM (Dialogue for Reverse Engineering Assessments and Methods) challenge to not only identify a better prognostic model for prediction of survival in patients with metastatic castration-resistant prostate cancer but also engage a community of international data scientists to study this disease.

Methods

Data from the comparator arms of four phase 3 clinical trials in first-line metastatic castration-resistant prostate cancer were obtained from Project Data Sphere, comprising 476 patients treated with docetaxel and prednisone from the ASCENT2 trial, 526 patients treated with docetaxel, prednisone, and placebo in the MAINSAIL trial, 598 patients treated with docetaxel, prednisone or prednisolone, and placebo in the VENICE trial, and 470 patients treated with docetaxel and placebo in the ENTHUSE 33 trial. Datasets consisting of more than 150 clinical variables were curated centrally, including demographics, laboratory values, medical history, lesion sites, and previous treatments. Data from ASCENT2, MAINSAIL, and VENICE were released publicly to be used as training data to predict the outcome of interest—namely, overall survival. Clinical data were also released for ENTHUSE 33, but data for outcome variables (overall survival and event status) were hidden from the challenge participants so that ENTHUSE 33 could be used for independent validation. Methods were evaluated using the integrated time-dependent area under the curve (iAUC). The reference model, based on eight clinical variables and a penalised Cox proportional-hazards model, was used to compare method performance. Further validation was done using data from a fifth trial—ENTHUSE M1—in which 266 patients with metastatic castration-resistant prostate cancer were treated with placebo alone.

Findings

50 independent methods were developed to predict overall survival and were evaluated through the DREAM challenge. The top performer was based on an ensemble of penalised Cox regression models (ePCR), which uniquely identified predictive interaction effects with immune biomarkers and markers of hepatic and renal function. Overall, ePCR outperformed all other methods (iAUC 0·791; Bayes factor >5) and surpassed the reference model (iAUC 0·743; Bayes factor >20). Both the ePCR model and reference models stratified patients in the ENTHUSE 33 trial into high-risk and low-risk groups with significantly different overall survival (ePCR: hazard ratio 3·32, 95% CI 2·39–4·62, p<0·0001; reference model: 2·56, 1·85–3·53, p<0·0001). The new model was validated further on the ENTHUSE M1 cohort with similarly high performance (iAUC 0·768). Meta-analysis across all methods confirmed previously identified predictive clinical variables and revealed aspartate aminotransferase as an important, albeit previously under-reported, prognostic biomarker.

Interpretation

Novel prognostic factors were delineated, and the assessment of 50 methods developed by independent international teams establishes a benchmark for development of methods in the future. The results of this effort show that data-sharing, when combined with a crowdsourced challenge, is a robust and powerful framework to develop new prognostic models in advanced prostate cancer.

Funding

Sanofi US Services, Project Data Sphere.

Le texte complet de cet article est disponible en PDF.

Plan


© 2017  Elsevier Ltd. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 18 - N° 1

P. 132-142 - janvier 2017 Retour au numéro
Article précédent Article précédent
  • Risk-stratified staging in paediatric hepatoblastoma: a unified analysis from the Children’s Hepatic tumors International Collaboration
  • Rebecka L Meyers, Rudolf Maibach, Eiso Hiyama, Beate Häberle, Mark Krailo, Arun Rangaswami, Daniel C Aronson, Marcio H Malogolowkin, Giorgio Perilongo, Dietrich von Schweinitz, Marc Ansari, Dolores Lopez-Terrada, Yukichi Tanaka, Rita Alaggio, Ivo Leuschner, Tomoro Hishiki, Irene Schmid, Kenichiro Watanabe, Kenichi Yoshimura, Yurong Feng, Eugenia Rinaldi, Davide Saraceno, Marisa Derosa, Piotr Czauderna
| Article suivant Article suivant
  • Estimation of tumour regression and growth rates during treatment in patients with advanced prostate cancer: a retrospective analysis
  • Julia Wilkerson, Kald Abdallah, Charles Hugh-Jones, Greg Curt, Mace Rothenberg, Ronit Simantov, Martin Murphy, Joseph Morrell, Joel Beetsch, Daniel J Sargent, Howard I Scher, Peter Lebowitz, Richard Simon, Wilfred D Stein, Susan E Bates, Tito Fojo

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.