S'abonner

Combined complex-source beam and spherical-multipole analysis for the electromagnetic probing of conical structures - 12/10/16

Doi : 10.1016/j.crhy.2016.07.018 
Ludger Klinkenbusch , Hendrik Brüns
 Kiel University, Kaiserstr. 2, 24143 Kiel, Germany 

Tel.: +49 431 8806252; fax: +49 431 8806253.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 6
Iconographies 6
Vidéos 0
Autres 0

Abstract

The paper addresses the combination of the spherical-multipole analysis in sphero-conal coordinates with a uniform complex-source beam (CSB) in order to analyze the scattering of a localized electromagnetic plane wave by any desired part of a perfectly conducting elliptic cone. The concept of uniform CSB is introduced and rigorously applied to the diffraction by a semi-infinite elliptic cone. The analysis takes into account the fact that the incident CSB does not satisfy the radiation condition. A new modal form of the Green's function for the elliptic cone is derived based on the principle that there is no energy loss to infinity. The numerical evaluation includes the scattered far fields of a CSB incident on the corner of a plane angular sector with different opening angles.

Le texte complet de cet article est disponible en PDF.

Résumé

Cet article présente la combinaison de l'analyse de multipôles sphériques en coordonnées sphéro-coniques avec une faisceau de source complexe (Complex Source Beam, CSB) dans le but d'analyser la diffusion localisée par un cône elliptique parfaitement conducteur d'une onde plane électromagnétique. Le concept de CSB est introduit au travers de la diffraction par un cône elliptique semi-infini. L'analyse prend en compte le fait que l'onde CSB incidente ne satisfait pas les conditions de radiation. Un nouveau modèle de la fonction de Green pour un cône elliptique est développé en faisant l'hypothèse qu'il n'y a pas de pertes d'énergie à l'infini. Le modèle numérique inclut la diffusion en champ lointain d'une source CSB sur le coin d'un secteur angulaire avec différents angles d'ouverture.

Le texte complet de cet article est disponible en PDF.

Keywords : Complex-source beam, Spherical-multipole analysis, Conical structures, Green's functions, Radiation condition

Mots-clés : Faisceau source complexe, Analyse multipôle sphérique, Structure conique, Fonction de Green, Condition de radiation


Plan


© 2016  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 17 - N° 9

P. 960-965 - novembre 2016 Retour au numéro
Article précédent Article précédent
  • Foreword
  • Alain Priou, Cyril Lupi
| Article suivant Article suivant
  • A variety of radars designed to explore the hidden structures and properties of the Solar System's planets and bodies
  • Valérie Ciarletti

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.