S'abonner

Global burden of drug-resistant tuberculosis in children: a mathematical modelling study - 21/09/16

Doi : 10.1016/S1473-3099(16)30132-3 
Peter J Dodd, DrPhD a, , Charalambos Sismanidis, PhD b, James A Seddon, PhD c
a School of Health and Related Research, University of Sheffield, Sheffield, UK 
b Global TB Programme, World Health Organization, Geneva, Switzerland 
c Department of Paediatric Infectious Diseases, Imperial College London, London, UK 

* Correspondence to: Dr Peter J Dodd, School of Health and Related Research, University of Sheffield, Sheffield S1 4DA, UK Correspondence to: Dr Peter J Dodd School of Health and Related Research University of Sheffield Sheffield S1 4DA UK

Summary

Background

After infection with Mycobacterium tuberculosis, children are at an increased risk of progression to tuberculosis disease; a condition that can be challenging to diagnose. New estimation approaches for children have highlighted the gap between incidence and notifications of M tuberculosis, and suggest there are more cases of isoniazid-resistant and multidrug-resistant (MDR) disease than are identified. No work has yet quantified the burden of drug-resistant infection, or accounted for other types of drug resistance or sampling uncertainty.

Methods

We combined a mathematical model of tuberculosis in children with an analysis of drug-resistance patterns to produce country-level, regional, and global estimates of drug-resistant infection and disease. We determined drug resistance using data from the Global Project on Antituberculosis Drug Resistance Surveillance at WHO, from surveys and surveillance reported between 1988 and 2014. We combined 1000 sampled proportions for each country from a Bayesian approach with 10 000 sampled country estimates of tuberculosis disease incidence and M tuberculosis infection prevalence. We estimated the proportions of tuberculosis cases at a country level with isoniazid monoresistance, rifampicin monoresistance, multidrug resistance (MDR), fluoroquinolone-resistant multidrug resistance, second-line injectable-resistant multidrug resistance, and extensive multidrug resistance with resistance to both a fluoroquinolone and a second-line injectable (XDR).

Findings

We estimated that 850 000 children developed tuberculosis in 2014; 58 000 with isoniazid-monoresistant tuberculosis, 25 000 with MDR tuberculosis, and 1200 with XDR tuberculosis. We estimate 67 million children are infected with M tuberculosis; 5 million with isoniazid monoresistance, 2 million with MDR, and 100 000 with XDR. Africa and southeast Asia have the highest numbers of children with tuberculosis, but the WHO Eastern Mediterranean region, European region, and Western Pacific region also contribute substantially to the burden of drug-resistant tuberculosis because of their much higher proportions of resistance.

Interpretation

Far more drug-resistant tuberculosis occurs in children than is diagnosed, and there is a large pool of drug-resistant infection. This finding has implications for approaches to empirical treatment and preventive therapy in some regions of the world.

Funding

UNITAID.

Le texte complet de cet article est disponible en PDF.

Plan


© 2016  World Health Organization. Published by Elsevier Ltd/Inc/BV. All rights reserved.. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 16 - N° 10

P. 1193-1201 - octobre 2016 Retour au numéro
Article précédent Article précédent
  • Population-based resistance of Mycobacterium tuberculosis isolates to pyrazinamide and fluoroquinolones: results from a multicountry surveillance project
  • Matteo Zignol, Anna S Dean, Natavan Alikhanova, Sönke Andres, Andrea Maurizio Cabibbe, Daniela Maria Cirillo, Andrei Dadu, Andries Dreyer, Michèle Driesen, Christopher Gilpin, Rumina Hasan, Zahra Hasan, Sven Hoffner, Ashaque Husain, Alamdar Hussain, Nazir Ismail, Mostofa Kamal, Mikael Mansjö, Lindiwe Mvusi, Stefan Niemann, Shaheed V Omar, Ejaz Qadeer, Leen Rigouts, Sabine Ruesch-Gerdes, Marco Schito, Mehriban Seyfaddinova, Alena Skrahina, Sabira Tahseen, William A Wells, Ya Diul Mukadi, Michael Kimerling, Katherine Floyd, Karin Weyer, Mario C Raviglione
| Article suivant Article suivant
  • Strengthening the Reporting of Observational Studies in Epidemiology for Newborn Infection (STROBE-NI): an extension of the STROBE statement for neonatal infection research
  • Elizabeth J A Fitchett, Anna C Seale, Stefania Vergnano, Michael Sharland, Paul T Heath, Samir K Saha, Ramesh Agarwal, Adejumoke I Ayede, Zulfiqar A Bhutta, Robert Black, Kalifa Bojang, Harry Campbell, Simon Cousens, Gary L Darmstadt, Shabir A Madhi, Ajoke Sobanjo-ter Meulen, Neena Modi, Janna Patterson, Shamim Qazi, Stephanie J Schrag, Barbara J Stoll, Stephen N Wall, Robinson D Wammanda, Joy E Lawn, SPRING (Strengthening Publications Reporting Infection in Newborns Globally) Group †

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.