S'abonner

Many-body quantum electrodynamics networks: Non-equilibrium condensed matter physics with light - 02/09/16

Doi : 10.1016/j.crhy.2016.05.003 
Karyn Le Hur a, , Loïc Henriet a, Alexandru Petrescu b, a, Kirill Plekhanov a, Guillaume Roux c, Marco Schiró d
a Centre de physique théorique, École polytechnique, CNRS, 91128 Palaiseau cedex, France 
b Department of Physics, Yale University, New Haven, CT 06520, USA 
c LPTMS, Université Paris-Sud and CNRS, UMR 8626, 91405 Orsay, France 
d Institut de physique théorique, Université Paris-Saclay, CNRS, CEA, 91191 Gif-sur-Yvette, France 

Corresponding author.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Abstract

We review recent developments regarding the quantum dynamics and many-body physics with light, in superconducting circuits and Josephson analogues, by analogy with atomic physics. We start with quantum impurity models addressing dissipative and driven systems. Both theorists and experimentalists are making efforts towards the characterization of these non-equilibrium quantum systems. We show how Josephson junction systems can implement the equivalent of the Kondo effect with microwave photons. The Kondo effect can be characterized by a renormalized light frequency and a peak in the Rayleigh elastic transmission of a photon. We also address the physics of hybrid systems comprising mesoscopic quantum dot devices coupled with an electromagnetic resonator. Then, we discuss extensions to Quantum Electrodynamics (QED) Networks allowing one to engineer the Jaynes–Cummings lattice and Rabi lattice models through the presence of superconducting qubits in the cavities. This opens the door to novel many-body physics with light out of equilibrium, in relation with the Mott–superfluid transition observed with ultra-cold atoms in optical lattices. Then, we summarize recent theoretical predictions for realizing topological phases with light. Synthetic gauge fields and spin–orbit couplings have been successfully implemented in quantum materials and with ultra-cold atoms in optical lattices — using time-dependent Floquet perturbations periodic in time, for example — as well as in photonic lattice systems. Finally, we discuss the Josephson effect related to Bose–Hubbard models in ladder and two-dimensional geometries, producing phase coherence and Meissner currents. The Bose–Hubbard model is related to the Jaynes–Cummings lattice model in the large detuning limit between light and matter (the superconducting qubits). In the presence of synthetic gauge fields, we show that Meissner currents subsist in an insulating Mott phase.

Le texte complet de cet article est disponible en PDF.

Résumé

Nous passons en revue des développements récents concernant la dynamique quantique hors équilibre et la physique de la lumière dans des circuits supraconducteurs et analogues de Josephson, par analogie avec les systèmes de physique atomique. Nous commençons par des modèles quantiques d'impuretés reliés à des systèmes dissipatifs et contrôlés. Théoriciens et expérimentateurs accomplissent des efforts en vue de la caractérisation de ces systèmes quantiques hors équilibre. Nous montrons comment les systèmes de jonctions Josephson peuvent servir à implémenter l'équivalent de l'effet Kondo avec des photons micro-onde. L'effet Kondo peut se caractériser par une fréquence lumineuse renormalisée et par un pic dans la transmission élastique Rayleigh d'un photon. Nous nous intéressons aussi à la physique des systèmes hybrides comprenant des dispositifs à points quantiques mésoscopiques couplés à un résonateur électromagnétique. Ensuite, nous discuterons des modèles de réseaux d'électrodynamique quantiques (QED) permettant de concevoir des modèles de réseaux de Jaynes–Cummings et de Rabi, via la présence de qubits supraconducteurs dans les cavités. Ceci ouvre la porte nouvelle physique pour le problème à N-corps dans les systèmes lumineux hors équilibre, en relation avec la transition Mott-superfluide observée avec des atomes ultra-froids dans des réseaux optiques. Nous résumons aussi des prédictions théoriques récentes pour réaliser des phases topologiques avec de la lumière. Des champs de jauge synthétiques et des couplages spin–orbite ont été mis en œuvre avec succès dans les matériaux quantiques et dans les systèmes d'atomes ultra-froids piégés dans des réseaux optiques – en utilisant des perturbations de Floquet périodiques dans le temps – ainsi que dans les systèmes de réseaux photoniques artificiels. Finalement, nous discutons l'effet Josephson lié aux modèles de Bose–Hubbard dans des géométries en échelle ainsi qu'à deux dimensions, produisant de la cohérence de phase et des courants Meissner. Le modèle de Bose–Hubbard est aussi lié au modèle de Jaynes–Cummings sur réseau. En présence de champs de jauge synthétiques, nous montrons que les courants Meissner subsistent dans une phase de Mott isolante.

Le texte complet de cet article est disponible en PDF.

Keywords : Condensed-matter physics with light, Superconducting circuit quantum electrodynamics networks, Josephson effect and nanoscience, Dissipative and driven quantum impurity models, Jaynes–Cummings and Rabi lattices, Topological phases and synthetic gauge fields

Mots-clés : Physique de la matière condensée avec la lumière, Réseaux électodynamiques quantiques à circuit supraconducteur, Effet Josephson et nanoscience, Modèles d'impuretés quantiques et contrôlés, Réseaux de Jaynes-Cummings et de Rabi, Phases topologiques et champs de jauge


Plan


© 2016  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 17 - N° 8

P. 808-835 - octobre 2016 Retour au numéro
Article précédent Article précédent
  • Foreword – Strong light–matter coupling in solid-state systems: A historical perspective
  • Alberto Amo, Jacqueline Bloch, Iacopo Carusotto
| Article suivant Article suivant
  • Towards strongly correlated photons in arrays of dissipative nonlinear cavities under a frequency-dependent incoherent pumping
  • José Lebreuilly, Michiel Wouters, Iacopo Carusotto

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.