S'abonner

Development and validation of a microRNA-based signature (MiROvaR) to predict early relapse or progression of epithelial ovarian cancer: a cohort study - 01/08/16

Doi : 10.1016/S1470-2045(16)30108-5 
Marina Bagnoli, PhD a, , Silvana Canevari, PhD b, , Daniela Califano, PhD e, Simona Losito, MD f, Massimo Di Maio, ProfMD g, Francesco Raspagliesi, MD c, Maria Luisa Carcangiu, MD d, Giuseppe Toffoli, MD i, Erika Cecchin, PhD i, Roberto Sorio, MD j, Vincenzo Canzonieri, MD k, Daniela Russo, PhD e, Giosué Scognamiglio, PhD f, Gennaro Chiappetta, PhD e, Gustavo Baldassarre, MD l, Domenica Lorusso, MD c, Giovanni Scambia, ProfMD m, Gian Franco Zannoni, ProfMD n, Antonella Savarese, MD o, Mariantonia Carosi, MD p, Paolo Scollo, MD q, Enrico Breda, MD r, Viviana Murgia, MD s, Francesco Perrone, MD g, Sandro Pignata, MD h, , Loris De Cecco, PhD b, , Delia Mezzanzanica, DrPhD a, ,
for the

Multicentre Italian Trials in Ovarian cancer (MITO) translational group

a Molecular Therapies Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy 
b Functional Genomics, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy 
c Unit of Gynaecological Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy 
d Anatomic Pathology 1 Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy 
e Functional Genomic Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione G Pascale”, IRCCS, Naples, Italy 
f Surgical Pathology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione G Pascale”, IRCCS, Naples, Italy 
g Clinical Trials Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione G Pascale”, IRCCS, Naples, Italy 
h Department of Urogynaecological Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione G Pascale”, IRCCS, Naples, Italy 
i Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico, Istituto Ricovero e Cura Carattere Scientifico (CRO-IRCCS), Aviano, Italy 
j Medical Oncology C, Centro di Riferimento Oncologico, Istituto Ricovero e Cura Carattere Scientifico (CRO-IRCCS), Aviano, Italy 
k Unit of Pathology, Centro di Riferimento Oncologico, Istituto Ricovero e Cura Carattere Scientifico (CRO-IRCCS), Aviano, Italy 
l Division of Experimental Oncology 2, Centro di Riferimento Oncologico, Istituto Ricovero e Cura Carattere Scientifico (CRO-IRCCS), Aviano, Italy 
m Department of Obstetrics and Gynecology, Gynecologic Oncology Unit, Catholic University of the Sacred Heart, Rome, Italy 
n Department of Human Pathology, Division of Gynecologic Pathology, Catholic University of the Sacred Heart, Rome, Italy 
o Division of Medical Oncology 1, Regina Elena Cancer Institute, Rome, Italy 
p Division of Pathology, Regina Elena Cancer Institute, Rome, Italy 
q Department of Obstetrics and Gynecology, Azienda Ospedaliera Cannizzaro, Catania, Italy 
r Medical Oncology Unit Ospedale S Giovanni Calibita Fatebenefratelli, Rome, Italy 
s Medical Oncology Unit Ospedale S Chiara, Trento, Italy 

* Correspondence to: Dr Delia Mezzanzanica, Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy Correspondence to: Dr Delia Mezzanzanica Unit of Molecular Therapies Department of Experimental Oncology and Molecular Medicine Fondazione IRCCS Istituto Nazionale dei Tumori Milan 20133 Italy

Summary

Background

Risk of relapse or progression remains high in the treatment of most patients with epithelial ovarian cancer, and development of a molecular predictor could be a valuable tool for stratification of patients by risk. We aimed to develop a microRNA (miRNA)-based molecular classifier that can predict risk of progression or relapse in patients with epithelial ovarian cancer.

Methods

We analysed miRNA expression profiles in three cohorts of samples collected at diagnosis. We used 179 samples from a Multicenter Italian Trial in Ovarian cancer trial (cohort OC179) to develop the model and 263 samples from two cancer centres (cohort OC263) and 452 samples from The Cancer Genome Atlas epithelial ovarian cancer series (cohort OC452) to validate the model. The primary clinical endpoint was progression-free survival, and we adapted a semi-supervised prediction method to the miRNA expression profile of OC179 to identify miRNAs that predict risk of progression. We assessed the independent prognostic role of the model using multivariable analysis with a Cox regression model.

Findings

We identified 35 miRNAs that predicted risk of progression or relapse and used them to create a prognostic model, the 35-miRNA-based predictor of Risk of Ovarian Cancer Relapse or progression (MiROvaR). MiROvaR was able to classify patients in OC179 into a high-risk group (89 patients; median progression-free survival 18 months [95% CI 15–22]) and a low-risk group (90 patients; median progression-free survival 38 months [24–not estimable]; hazard ratio [HR] 1·85 [1·29–2·64], p=0·00082). MiROvaR was a significant predictor of progression in the two validation sets (OC263 HR 3·16, 95% CI 2·33–4·29, p<0·0001; OC452 HR 1·39, 95% CI 1·11–1·74, p=0·0047) and maintained its independent prognostic effect when adjusted for relevant clinical covariates using multivariable analyses (OC179: adjusted HR 1·48, 95% CI 1·03–2·13, p=0·036; OC263: adjusted HR 3·09 [2·24–4·28], p<0·0001; and OC452: HR 1·41 [1·11–1·79], p=0·0047).

Interpretation

MiROvaR is a potential predictor of epithelial ovarian cancer progression and has prognostic value independent of relevant clinical covariates. MiROvaR warrants further investigation for the development of a clinical-grade prognostic assay.

Funding

AIRC and CARIPLO Foundation.

Le texte complet de cet article est disponible en PDF.

Plan


© 2016  Elsevier Ltd. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 17 - N° 8

P. 1137-1146 - août 2016 Retour au numéro
Article précédent Article précédent
  • Lenalidomide plus dexamethasone versus observation in patients with high-risk smouldering multiple myeloma (QuiRedex): long-term follow-up of a randomised, controlled, phase 3 trial
  • María-Victoria Mateos, Miguel-Teodoro Hernández, Pilar Giraldo, Javier de la Rubia, Felipe de Arriba, Lucía López Corral, Laura Rosiñol, Bruno Paiva, Luis Palomera, Joan Bargay, Albert Oriol, Felipe Prosper, Javier López, José-María Arguiñano, Nuria Quintana, José-Luis García, Joan Bladé, Juan-José Lahuerta, Jesús-F San Miguel
| Article suivant Article suivant
  • Combined chemotherapy with cisplatin, etoposide, and irinotecan versus topotecan alone as second-line treatment for patients with sensitive relapsed small-cell lung cancer (JCOG0605): a multicentre, open-label, randomised phase 3 trial
  • Koichi Goto, Yuichiro Ohe, Taro Shibata, Takashi Seto, Toshiaki Takahashi, Kazuhiko Nakagawa, Hiroshi Tanaka, Koji Takeda, Makoto Nishio, Kiyoshi Mori, Miyako Satouchi, Toyoaki Hida, Naruo Yoshimura, Toshiyuki Kozuki, Fumio Imamura, Katsuyuki Kiura, Hiroaki Okamoto, Toshiyuki Sawa, Tomohide Tamura, JCOG0605 investigators

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.