S'abonner

Breast cancer screening with tomosynthesis (3D mammography) with acquired or synthetic 2D mammography compared with 2D mammography alone (STORM-2): a population-based prospective study - 01/08/16

Doi : 10.1016/S1470-2045(16)30101-2 
Daniela Bernardi, MD a, Petra Macaskill, ProfPhD b, Marco Pellegrini, MD a, Marvi Valentini, MD a, Carmine Fantò, MD a, Livio Ostillio, MD a, Paolina Tuttobene, MD a, Andrea Luparia, MD a, Nehmat Houssami, ProfPhD b,
a U.O. Senologia Clinica e Screening Mammografico, Department of Diagnostics, Ospedale di Trento, Azienda Provinciale Servizi Sanitari, Trento, Italy 
b School of Public Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia 

* Correspondence to: Prof Nehmat Houssami, School of Public Health (A27), Sydney Medical School, University of Sydney, Sydney 2006, NSW, Australia Correspondence to: Prof Nehmat Houssami School of Public Health (A27) Sydney Medical School University of Sydney Sydney NSW 2006 Australia

Summary

Background

Breast tomosynthesis (pseudo-3D mammography) improves breast cancer detection when added to 2D mammography. In this study, we examined whether integrating 3D mammography with either standard 2D mammography acquisitions or with synthetic 2D images (reconstructed from 3D mammography) would detect more cases of breast cancer than 2D mammography alone, to potentially reduce the radiation burden from the combination of 2D plus 3D acquisitions.

Methods

The Screening with Tomosynthesis Or standard Mammography-2 (STORM-2) study was a prospective population-based screening study comparing integrated 3D mammography (dual-acquisition 2D–3D mammography or 2D synthetic–3D mammography) with 2D mammography alone. Asymptomatic women aged 49 years or older who attended population-based screening in Trento, Italy were recruited for the study. All participants underwent digital mammography with 2D and 3D mammography acquisitions, with the use of software that allowed synthetic 2D mammographic images to be reconstructed from 3D acquisitions. Mammography screen-reading was done in two parallel double-readings conducted sequentially for 2D acquisitions followed by integrated acquisitions. Recall based on a positive mammography result was defined as recall at any screen read. Primary outcome measures were a comparison between integrated (2D–3D or 2D synthetic–3D) mammography and 2D mammography alone of the number of cases of screen-detected breast cancer, the cancer detection rate per 1000 screens, the incremental cancer detection rate, and the number and percentage of false-positive recalls.

Findings

Between May 31, 2013, and May 29, 2015, 10 255 women were invited to participate, of whom 9672 agreed to participate and were screened. In these 9672 participants (median age 58 years [IQR 53–63]), screening detected 90 cases of breast cancer, including 74 invasive breast cancers, in 85 women (five women had bilateral breast cancer). To account for these bilateral cancers in cancer detection rate estimates, the number of screens used for analysis was 9677. Both 2D–3D mammography (cancer detection rate 8·5 per 1000 screens [82 cancers detected in 9677 screens]; 95% CI 6·7–10·5) and 2D synthetic–3D mammography (8·8 per 1000 [85 in 9677]; 7·0–10·8) had significantly higher rates of breast cancer detection than 2D mammography alone (6·3 per 1000 [61 in 9677], 4·8–8·1; p<0·0001 for both comparisons). The cancer detection rate did not differ significantly between 2D–3D mammography and 2D synthetic–3D mammography (p=0·58). Compared with 2D mammography alone, the incremental cancer detection rate from 2D–3D mammography was 2·2 per 1000 screens (95% CI 1·2–3·3) and that from 2D synthetic–3D mammography was 2·5 per 1000 (1·4–3·8). Compared with the proportion of false-positive recalls from 2D mammography alone (328 of 9587 participants not found to have cancer at assessment) [3·42%; 95% CI 3·07–3·80]), false-positive recall was significantly higher for 2D–3D mammography (381 of 9587 [3·97%; 3·59–4·38], p=0·00063) and for 2D synthetic–3D mammography (427 of 9587 [4·45%; 4·05–4·89], p<0·0001).

Interpretation

Integration of 3D mammography (2D–3D or 2D synthetic–3D) detected more cases of breast cancer than 2D mammography alone, but increased the percentage of false-positive recalls in sequential screen-reading. These results should be considered in the context of the trade-off between benefits and harms inherent in population breast cancer screening, including that significantly increased breast cancer detection from integrating 3D mammography into screening has the potential to augment screening benefit and also possibly contribute to overdiagnosis.

Funding

None.

Le texte complet de cet article est disponible en PDF.

Plan


© 2016  Elsevier Ltd. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 17 - N° 8

P. 1105-1113 - août 2016 Retour au numéro
Article précédent Article précédent
  • Prophylactic radiotherapy for the prevention of procedure-tract metastases after surgical and large-bore pleural procedures in malignant pleural mesothelioma (SMART): a multicentre, open-label, phase 3, randomised controlled trial
  • Amelia O Clive, Hazel Taylor, Lee Dobson, Paula Wilson, Emma de Winton, Niki Panakis, Justin Pepperell, Timothy Howell, Samuel A Stewart, Erika Penz, Nikki Jordan, Anna J Morley, Natalie Zahan-Evans, Sarah Smith, Timothy J P Batchelor, Adrian Marchbank, Lesley Bishop, Alina A Ionescu, Mike Bayne, Samantha Cooper, Anthony Kerry, Peter Jenkins, Elizabeth Toy, Vallipuram Vigneswaran, James Gildersleve, Merina Ahmed, Fiona McDonald, Mick Button, Conrad Lewanski, Charles Comins, Muthukumar Dakshinamoorthy, Y C Gary Lee, Najib M Rahman, Nick A Maskell
| Article suivant Article suivant
  • Toxicity and quality of life after adjuvant chemoradiotherapy versus radiotherapy alone for women with high-risk endometrial cancer (PORTEC-3): an open-label, multicentre, randomised, phase 3 trial
  • Stephanie M de Boer, Melanie E Powell, Linda Mileshkin, Dionyssios Katsaros, Paul Bessette, Christine Haie-Meder, Petronella B Ottevanger, Jonathan A Ledermann, Pearly Khaw, Alessandro Colombo, Anthony Fyles, Marie-Helene Baron, Henry C Kitchener, Hans W Nijman, Roy F Kruitwagen, Remi A Nout, Karen W Verhoeven-Adema, Vincent T Smit, Hein Putter, Carien L Creutzberg, PORTEC study group †

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.