S'abonner

Dislocations in a quantum crystal : Solid helium: A model and an exception - 07/01/16

Doi : 10.1016/j.crhy.2015.12.015 
Sébastien Balibar a, , John Beamish b, Andrew Fefferman c, Ariel Haziot d, Xavier Rojas e, Fabien Souris b
a Laboratoire Pierre-Aigrain, Département de physique, École normale supérieure, associé au CNRS et aux Universités Pierre-et-Marie-Curie et Paris-Diderot, 24, rue Lhomond, 75231 Paris cedex 05, France 
b Department of Physics, University of Alberta, Edmonton, T6G 2E1, Canada 
c Université Grenoble Alpes, Institut Néel, BP 166, 38042 Grenoble cedex 9, France 
d Department of Physics, Pennsylvania State University, University Park, PA 16802, USA 
e Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK 

Corresponding author.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Abstract

Solid helium is paradoxical: it is both a model and an exception. It is a model for crystal properties mainly because of its extreme purity which makes universal phenomena simpler and easier to identify. It is also exceptional because the large quantum fluctuations of atoms around the nodes in their crystal lattice allow these phenomena to occur at very low temperature with a large amplitude. As noticed by Jacques Friedel in 2013, the properties of helium 4 crystals illustrate how the motion of dislocations may reduce their shear elastic modulus, as it does in all hexagonal close packed (hcp) crystals including metals. But this motion takes place without any dissipation in the limit of   and in the absence of impurities, which is now exceptional and leads to an elastic anomaly at low temperature, which was called “giant plasticity” by Haziot et al. in 2013. More recently, we have discovered that, in helium-4 crystals, helium-3 impurities are not necessarily fixed pinning centers for dislocations. Even at relatively large velocities, dislocations are able to move dressed with impurities somehow as a necklace of atomic pearls through the periodic lattice. This illustrates what is really quantum in these crystals: it is mainly the dynamics of their dislocations and the behavior of impurities.

Le texte complet de cet article est disponible en PDF.

Résumé

L'hélium solide est paradoxal : c'est à la fois un cristal modèle et une exception. C'est un modèle pour l'étude des propriétés cristallines à cause de son extrême pureté, qui rend certains phénomènes universels plus simples et plus faciles à identifier. C'est aussi un système exceptionnel, car les fluctuations quantiques de ses atomes autour des nœuds du réseau cristallin permettent à ces phénomènes d'avoir lieu à très basse température, avec une amplitude particulièrement grande. Comme l'avait remarqué Jacques Friedel en 2013, les propriétés des cristaux d'hélium 4 illustrent la manière dont le mouvement des dislocations peut réduire leur module élastique de cisaillement transverse, comme dans tout cristal hexagonal compact (hcp), y compris certains métaux. Mais ce mouvement a lieu sans dissipation lorsque la température tend vers zéro et en l'absence totale d'impuretés, ce qui est exceptionnel et conduit à une anomalie élastique qui a été appelée « plasticité géante » par Haziot et al. en 2013. Plus récemment, nous avons découvert que, dans ces cristaux d'hélium 4, les impuretés d'hélium 3 ne sont pas nécessairement des points d'ancrage fixes pour les dislocations. Même à relativement grande vitesse, les dislocations sont capables de se déplacer habillées d'hélium 3, comme un collier de perles atomiques à travers le réseau périodique. Cela illustre ce qui est vraiment quantique dans ces cristaux : il s'agit principalement de la dynamique de leurs dislocations et du comportement des impuretés.

Le texte complet de cet article est disponible en PDF.

Keywords : Dislocations, Elasticity, Plasticity, Quantum crystals, Helium

Mots-clés : Dislocations, Élasticité, Plasticité, Crystaux quantiques, Hélium


Plan


© 2015  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 17 - N° 3-4

P. 264-275 - mars 2016 Retour au numéro
Article précédent Article précédent
  • Dislocations and other topological oddities
  • Pawel Pieranski
| Article suivant Article suivant
  • Jacques Friedel and the physics of metals and alloys
  • Jacques Villain, Mireille Lavagna, Patrick Bruno

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.