S'abonner

Feature selection based on empirical-risk function to detect lesions in vascular computed tomography - 30/08/14

Doi : 10.1016/j.irbm.2014.07.003 
M.A. Zuluaga a , M. Hernández Hoyos b , M. Orkisz c,
a Centre for Medical Image Computing, Medical Physics and Bioengineering Department, University College London, WC1E BT London, UK 
b Grupo Imagine, Grupo de Ingeniería Biomédica, Universidad de los Andes, Bogotá, Colombia 
c Université de Lyon, CREATIS; CNRS UMR5220; Inserm U1044; INSA-Lyon; Université Lyon 1, France 

Corresponding author.
Sous presse. Épreuves corrigées par l'auteur. Disponible en ligne depuis le Saturday 30 August 2014
Cet article a été publié dans un numéro de la revue, cliquez ici pour y accéder

Abstract

Objective

The overall goal of the study is to detect coronary artery lesions regardless their nature, calcified or hypo-dense. To avoid explicit modelling of heterogeneous lesions, we adopted an approach based on machine learning and using unsupervised or semi-supervised classifiers. The success of the classifiers based on machine learning strongly depends on the appropriate choice of features differentiating between lesions and regular appearance. The specific goal of this article is to propose a novel strategy devised to select the best feature set for the classifiers used, out of a given set of candidate features.

Materials and methods

The features are calculated in image planes orthogonal to the artery centerline, and the classifier assigns to each of these cross-sections a label “healthy” or “diseased”. The contribution of this article is a feature-selection strategy based on the empirical risk function that is used as a criterion in the initial feature ranking and in the selection process itself. We have assessed this strategy in association with two classifiers based on the density-level detection approach that seeks outliers from the distribution corresponding to the regular appearance. The method was evaluated using a total of 13,687 cross-sections extracted from 53 coronary arteries in 15 patients.

Results

Using the feature subset selected by the risk-based strategy, balanced error rates achieved by the unsupervised and semi-supervised classifiers respectively were equal to 13.5% and 15.4%. These results were substantially better than the rates achieved using feature subsets selected by supervised strategies. The unsupervised and semi-supervised methods also outperformed supervised classifiers using feature subsets selected by the corresponding supervised strategies.

Discussion

Supervised methods require large data sets annotated by experts, both to select the features and to train the classifiers, and collecting these annotations is time-consuming. With these methods, lesions whose appearance differs from the training data may remain undetected. Lesion-detection problem is highly imbalanced, since healthy cross-sections usually are much more numerous than the diseased ones. Training the classifiers based on the density-level detection approach needs a small number of annotations or no annotations at all. The same annotations are sufficient to compute the empirical risk and to perform the selection. Therefore, our strategy associated with an unsupervised or semi-supervised classifier requires a considerably smaller number of annotations as compared to conventional supervised selection strategies. The approach proposed is also better suited for highly imbalanced problems and can detect lesions differing from the training set.

Conclusion

The risk-based selection strategy, associated with classifiers using the density-level detection approach, outperformed other strategies and classifiers when used to detect coronary artery lesions. It is well suited for highly imbalanced problems, where the lesions are represented as low-density regions of the feature space, and it can be used in other anomaly detection problems interpretable as a binary classification problem where the empirical risk can be calculated.

Le texte complet de cet article est disponible en PDF.

Plan


© 2014  Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.